

Welcome to Grascii’s documentation!

Contents:

	Grascii
	About the Project

	Useful Links

	Made With

	Getting Started

	Grascii Language

	Grascii Search

	Grascii Dictionary

	Grascii Dephrase (Experimental)

	Documentation

	Contributing

	License

	Acknowledgements

	Maintainer’s Note

	Language
	What is Grascii?

	Annotations

	Other Symbols

	Examples

	Unsupported Language Features

	Search
	Usage

	Implementation

	Dictionary
	Dictionary Source File Layout

	Source File Conventions

	The Build Process

	Building

	Working with Custom Dictionaries

	Configuration
	Getting Started

	Editing the Configuration

	Similarity Resolution

	Changelog
	Unreleased

	0.5.0 - 2022-08-12

	0.4.1 - 2022-06-29

	0.4.0 - 2022-06-27

	0.3.0 - 2021-12-14

	0.2.2 - 2021-07-08

	0.2.1 - 2021-07-02

	0.2.0 - 2021-06-25

Indices and tables

	Index

	Module Index

Grascii

About the Project

Grascii is a language used to represent Gregg Shorthand forms using the ASCII
character set (characters found on a standard keyboard). The Grascii Project,
also referred to as Grascii, encompasses the set of tools and resources
accompanying the language that facilitate the reading, writing, and study of
Gregg Shorthand at all levels.

Useful Links

	Full Documentation (readthedocs) [https://grascii.readthedocs.io]

	Additional Dictionaries [https://github.com/grascii/dictionaries]

	grascii-gui (graphical interface for Grascii Search) [https://github.com/grascii/gui]

Made With

	Python 3

Getting Started

Prerequisites

	Python 3.7+

Installation

Install the package:

$ python -m pip install grascii[interactive]

Note: We recommend the interactive extra for the majority of users. You may
omit the interactive extra when using the package as a library to
reduce dependencies. Also see grascii-gui [https://github.com/grascii/gui]
for a graphical interface for Grascii Search.

Verify the installation:

$ grascii --help

If the command fails, your PATH may not contain the location of Python scripts.

You can also try:

$ python -m grascii --help

Grascii Language

The Grascii Language aims to be straightforward for those who are familiar with
Gregg Shorthand. That is, Grascii represents most strokes with the letters that
match their sounds. For example, the word Cross is written as KROS.

For a more detailed overview of the language, see language [https://grascii.readthedocs.io/en/latest/language.html].

Grascii Search

Grascii Search is the headline tool of the Grascii Project. It provides many
useful options for searching Grascii Dictionaries (reverse Gregg Shorthand
dictionaries).

Motivation

The existence of shorthand dictionaries have aided the conversion of longhand
to shorthand. However, the reverse has remained a challenge since the
inception of Gregg Shorthand. Grascii Search solves this problem by allowing
users to identify the longhand corresponding to a shorthand form by performing
a search based on its Grascii representation.

Basic Usage

Ex.:

$ grascii search -g AB
AB About
A|B Agreeable
Results: 2

Uncertainty

Occassionally, a stroke is mistaken for one of similar form. Thus, Grascii
Search provides levels of uncertainty.

Ex.:

$ grascii search -g FND -u1
FND Found
FND Fund
FTH Forth
FTH Further
SND Sound
Results: 5

The ND stroke could also be an under TH or an MT/MD. The search accounts for
these possibilities with Forth and Further. F is also close to S or V,
resulting in Sound.

Interactive Mode

For repeated usage, we recommend running Grascii Search in interactive mode.
For more complex queries, interactive mode removes the need of using escape
sequences on the command line.

$ grascii search -i

Note: Requires the interactive extra

More Options

For more options, see search [https://grascii.readthedocs.io/en/latest/gsearch.html].

Grascii Dictionary

Grascii comes with a dictionary based on the 1916 Gregg Shorthand Dictionary.

More dictionaries for other versions of Gregg and dictionaries including
phrases are available for installation at the Grascii Dictionaries repository [https://github.com/grascii/dictionaries].

You can also write, build, and install your own custom dictionaries.

For more information, see dictionary [https://grascii.readthedocs.io/en/latest/dictionary.html].

Grascii Dephrase (Experimental)

Grascii includes an experimental phrase parsing module.

It attempts to give the phrase for the most common phrase constructions in
Gregg Shorthand and provide suggestions for never before seen phrases:

$ python -m grascii.dephrase AVNBA
I HAVE NOT BEEN ABLE

Documentation

Documentation is available on Read the Docs [https://grascii.readthedocs.io].

Contributing

Contributions of any kind are welcome and appreciated. You can contribute by:

	Reporting bugs or unexpected behavior

	Fixing bugs and solving issues

	Helping implement new features

	Editing documentation for correctness, completeness, and clarity

	Sharing thoughts and suggestions to improve the Grascii Language

Dictionary

If you find an error in any of the dictionaries, please open an issue or pull
request at the dictionaries repository [https://github.com/grascii/dictionaries].

Contributions to the dictionaries repository are also welcome to correct errors
and create more dictionaries.

License

This project is under the MIT License [https://github.com/grascii/grascii/blob/master/LICENSE.txt].

Acknowledgements

Many thanks to the developers of Lark [https://github.com/lark-parser/lark], Questionary [https://github.com/tmbo/questionary], appdirs [https://github.com/ActiveState/appdirs] and Qwertigraphy [https://github.com/codepoke-kk/qwertigraphy].

Maintainer’s Note

Grascii is not completely stable, but I hope others find the project useful. I
try to open draft pull requests with task lists to keep the community informed
of upcoming features and the direction of the project. If you notice that there
has not been any activity for a couple of weeks, feel free to leave a comment
requesting a status update.

– chanicpanic

Language

What is Grascii?

Grascii is a language designed to represent Gregg Shorthand forms using the
ASCII character set.

It is designed to be intuitive to those already familiar with the system.

Grascii is a context free grammar, and it’s implementation can be viewed
in grascii.lark.

Grascii is moderately ambiguous. However, as the shorthand system is also
ambiguous, it is reasonable that Grascii inherits this attribute.

The current definition of Grascii is based on the Pre-anniversary (1916)
version of Gregg Shorthand.

It aims to describe the shorthand forms accurately and succinctly. It also
has many additional symbols enabling it to describe some of the lesser used
features of the system.

For a summary of what the language does not currently support, see the list
below.

	Shorthand Form

	Grascii Representation(s)

	Annotation(s)

	
	K

	

	
	G

	

	
	R

	

	
	L

	

	
	N

	

	
	M

	

	
	T

	

	
	D

	

	
	TH

	() ,

	
	P

	

	
	B

	

	
	F

	

	
	V

	

	
	CH

	

	
	J

	

	
	S, Z

	() ,

	
	X

	

	
	SH

	,

	
	‘

	

	
	NG

	

	
	NK

	

	
	LD

	

	
	A

	~ | . ,

	
	E

	~ | . ,

	
	O

	(. ,

	
	U

) . ,

	
	EU

	

	
	AU

	

	
	OE

	

	
	I

	~ |

	
	A&E

	~ |

	
	A&’

	~ |

	
	NT, ND

	

	
	MT, MD

	

	
	TN, DN

	

	
	TM, DM

	

	
	MN, MM

	

	
	DT, TD, DD

	

	
	DF, DV, TV

	

	
	SS

	

	
	XS

	

	
	JNT, JND, PNT, PND

	

Annotations

	Annotation

	Acceptable Tokens

	Description

	.

	A, E, O, U

	Denotes the medium
sound of the four
standard vowel groups.

	,

	A, E, O, U

	Denotes the long
sound of the four
standard vowel groups.

	,

	S, Z, TH, SH

	Denotes the more
obscure sound of the
preceeding consonant.
Ex. gas vs. gaze,
breath vs. breathe,
assure vs. azure.

	~

	A, E, I, A&’, A&E

	Denotes that the
preceeding circle
vowel is reversed.

	|

	A, E, I, A&’, A&E

	Denotes that the
preceeding circle
vowel is looped.

)

	S, Z, TH

	When following an S/Z,
denotes a right S/Z.
When following an TH,
denotes an under TH.

	(

	S, Z, TH

	When following an S/Z,
denotes a left S/Z.
When following an TH,
denotes an over TH.

	(

	O

	Denotes an O on its
side.

)

	U

	Denotes an U on its
side.

	_

	A, E, O, U, I, EU, OU, OE,
A&’, A&E

	Signifies a W sound to
be applied before the
preceeding vowel.

Other Symbols

	Symbol

	Description

	^

	When placed between tokens, denotes that the two forms are
disjoined. When placed at the end of a form, denotes that
the preceeding form lies above the line of writing.

	-

	When placed between grascii forms, denotes that the two
characters should not be interpreted as a blended form.
Ex. N-T prevents interpretation on NT.

Examples

	Shorthand Form

	English

	Grascii

	
	
	

Unsupported Language Features

	Grascii does provide a way of distinguishing between smooth and sharp
joinings. There is no plan to make it possible to make this distinction in
the future.

	Intersection is currently not implemented. Proposed symbol to denote two
intersected characters: \.

	RD is currently not implemented as it does not appear in Gregg 1916,
although, it is a form in subsequent versions.

	There is no way of distinguishing the capitalization of a form.

	The under joining/short vowel sound is not included.

Search

The core feature of the Grascii suite is search.

Fundamentally, it allows one to enter a Grascii string as a query and
search the Grascii dictionary for potential translations.

Usage

	
grascii search ...

	

	
-h, --help

	

Print a help message and exit.

	
-g <grascii>, --grascii <grascii>

	

Set a Grascii String to use as a query.

	
-e <regex>, --regex <regex>

	

Set a regular expression to use as a query.

	
-r <word>, --reverse <word>

	

Search by word instead of Grascii.

	
-i, --interactive

	

Run searches in interactive mode. This is the recommended mode for general
use, as :option`–grascii` and --regex may require using shell escape sequences.

	
-u {0, 1, 2}, --uncertainty {0, 1, 2}

	

Set the uncertainty level of a Grascii string. 2 represents the greatest
uncertainty.

	
-s {match, start, contain}, --search-mode {match, start, contain}

	

Set the type of search to perform.

match: Search for words that
closely match the input.

start; Search for words that start with the input.

contain; Search for words that contain the input.

	
-a {discard, retain, strict}, --annotation-mode {discard, retain, strict}

	

Set how to handle Grascii annotations.

discard: Annotations are discarded. Search results may contain
annotations in any location.

retain: Annotations in the input must appear in search results. Other annotations may appear in the results.

strict: Annotations in the input must appear in search results. Other annotations may not appear in the results.

	
-p {discard, retain, strict}, --aspirate-mode {discard, retain, strict}

	

Set how to handle Grascii aspirates.

discard: Aspirates are discarded. Search results may contain
aspirates in any location.

retain: Aspirates in the input must appear in search results. Other aspirates may appear in the results.

strict: Aspirates in the input must appear in search results. Other aspirates may not appear in the results.

	
-j {discard, retain, strict}, --disjoiner-mode {discard, retain, strict}

	

Set how to handle Grascii disjoiners.

discard: Disjoiners are discarded. Search results may contain
disjoiners in any location.

retain: Disjoiners in the input must appear in search results. Other disjoiners may appear in the results.

strict: Disjoiners in the input must appear in search results. Other disjoiners may not appear in the results.

	
-n {best, all}, --interpretation {best, all}

	

How to handle ambiguous Grascii strings.

best: Only search with the best interpretation.

all: Search with all interpretations.

	
-f, --fix-first

	

Apply an uncertainty of 0 to the first stroke.

	
-d <dictionary>, --dictionary <dictionary>

	

Specify which dictionary to search. This option may be used more than once to
search multiple dictionaries at the same time.

<dictionary> is either a path to the output directory of a built
dictionary, or a colon followed by the name of an installed dictionary.
Ex: :preanniversary.

Suggestions

	use interactive mode

	--regex is intended for advanced users and advanced searches. Regexes
can be difficult to deal with manually, and most users should use
--grascii instead as it handles many of these complications. Using
--regex is effectively equivalent to
$ grep [regex] dict/*

Implementation

The search procedure when given a Grascii query is as follows:

	Convert the Grascii string to uppercase. Parse the Grascii string into
tokens and sets of annotations on those tokens.

	As the Grascii language is ambiguous, all possible parsings are
generated.

	Choose an interpretation (parse).
For each interpretation a regular expression is constructed.

	Each token is replaced with a string of regex alternatives among
its equivalent forms and similar forms based on the uncertainty level. To
learn how uncertainty is resolved, see similarity.md.

	In standard mode, modifiers are preserved. Or all possible modifiers
for each token are built into the regex which may or may not occur.

	A set of starting letters is tracked which are the first alphabetic
characters required to be accepted by any regex.

	The dictionary files corresponding to these letters are opened and
each line is searched with each regex.

	Any lines that have a matching regex are returned.

Dictionary

Grascii comes with the Grascii forms of all words in the 1916 Gregg
Shorthand Dictionary.

These mappings of Grascii strings to their corresponding words are contained in
a series of text files in the dictionaries/builtins subdirectories.

These dictionary source files are compiled into the dictionary
format that Grascii Search expects using grascii dictionary build.

Dictionary Source File Layout

Basic Entry

Each entry in a dictionary source file is contained on its own line in
the following scheme:

[Grascii String] [Translation]

There can be any amount of whitespace surrounding the Grascii String and
its Translation.

Both Grascii String and Translation are case-insensitive.

Blank Lines

Blank Lines are ignored

Comments

Lines whose first non-whitespace character is a # are ignored.

This is a comment

Uncertainties

An entry preceded by a ? will produce a warning during the build phase.

I am not sure if that is an A or an E
? ken keen

Source File Conventions

While there is a reasonable amount of freedom in the dictionary source file
format, a number of conventions were followed in writing the source files
for the dictionary. It is recommended for new files to also follow these
conventions.

	Within source files, entries are placed alphabetically by translation.

	When adding entries from a Gregg Shorthand dictionary, a comment denotes
the corresponding page and column number in the dictionary. Entries in
different pages/columns are separated by a blank line.

	Comments should have # as the first character of the line, and there
should be a single space following the # before the first word of the
comment.

	If applicable, ? should be the first character of the line, and there
should be a single space following the ? before the Grascii string.

	There should be no excess whitespace before or after the Grascii string
and its translation. There should be a single space between the Grascii
string and its translation.

	Grascii Strings and translations are written in lower case. The case will
be adjusted during a build.

	Entries taken from a dictionary are written in Grascii as presented. That
is, annotations are not applied unless explicitly displayed. By extension,
entries should be written in the simplest form possible. Use annotations only if
necessary to distinguish the word from another. This helps generalize the
dictionary for better search results.

	The direction annotations on S and TH are only included if the
character is in the direction contrary to its standard joining based on the
characters around it.

	Words which include two strokes next to each other that make up a blend,
but are not blended, are written with a barrier between them -.
While these are stripped in the standard build mode, this information is
useful for other build types that may be valuable in the future.

	When writing a stroke that has more than one sound, Use the version that
matches the sound it makes in the word.

The Build Process

Input and Output

The build routine takes a set of dictionary source files and outputs a
set of text files in the format expected by Grascii Search.

It outputs files of the form: A, B, C, D, etc. where each file
contains entries whose first alphabetic character in its Grascii form
matches the name of the file in which it is contained.

This light indexing reduces the number of entries that Grascii Search must
check.

Output File Format

Entries

Each entry in an output file is contained on its own line in the following
scheme:

[GRASCII STRING] [Translation]`

Where GRASCII STRING is in all uppercase and Translation’s first letter
is uppercase, and the rest of the string is lowercase.

There is no whitespace preceding GRASCII STRING or following Translation
. There is exactly one space between them.

Blank Lines

Output files contain no blank lines.

Building

Usage

	
grascii dictionary build [-h] [-o OUTPUT] [-c] [-p] [-s] infiles [infiles ...]

	

	
<infiles>

	The dictionary source files to compile.

	
-h, --help

	Print a help message and exit.

	
-o, --output

	Set the directory in which compiled files will be output.

	
-c, --clean

	Remove all files in the output directory before compiling.

	
-p, --parse

	During the build, all Grascii Strings will be attempted to be parsed to
verify that it is a valid Grascii string. If the parse fails, an error
will be reported, and the corresponding entry will not be included in
the output.

	
-w, --words

	Provide a path to a line-separated words file. If provided, all translations
will be looked up in the words file to check the spelling/existence of the
word. If the word is not found, a warning will be reported, but the
corresponding entry will still be included in the output.

	
-n, --count

	During the build, all lines are checked to have a single Grascii String
followed by a translation of an expected number of words (default 1). If the
expected number of words in the translation is less than the actual
number of words, a warning will be reported, but the corresponding entry will
still be included in the output.

	
-k, --check-only

	Only check the input. No output is generated.

	
-v, --verbose

	Increase the output verbosity. May be specified up to two times.

Warnings and Errors

During a build, you may encounter warnings and errors.

Warnings indicate that something unusual has been found with an entry.
Entries that receive a warning may warrant special attention/review.
However, these entries will still be included in the final output.

Errors indicate that there was a failure when processing an entry. Entries
that receive an error will not be included in the final output.

Possible Warnings

Uncertainty

Reports that an entry beginning with ? has been found.

Too many tokens

When the --count flag is set, denotes that too many
tokens have been found in a source entry. The first word on a line is
interpreted as a Grascii string and the rest are interpreted as its
translation. By default, the translation is expected to be one word in length.
For longer translations, this warning may be silenced by including *[#] at
the beginning of the line (but after ? if present) where # is the number
of words in the translation. Example entry: *2 uer we are.

Spelling

When a words file is provided with --words, denotes that one or more
parts of an entry’s translation has not been found in the words file.

Possible Errors

Too few tokens

Denotes that there are too few words on a line. A translation may be
missing or incomplete.

Invalid Grascii

When the --parse flag is set, denotes that the first word is not a
valid Grascii string.

Suggestions

Most of the time, it is acceptable to run the build without the
--parse flag for a quick build. However, it is recommended to run a
build with this option and resolve the issues before releasing the dictionary
publicly.

The --count flag is recommended for standard dictionaries, but may be
omitted for phrase dictionaries in which the majority of translations are more
than one word in length.

On Unix systems, words files for the --words option may be found in
/usr/share/dict or /usr/dict.

Working with Custom Dictionaries

It is possible to write your own dictionaries to use with the Grascii
tool suite.

	Make a directory to store your dictionary source files.

$ mkdir mysrc

	Add source files to this directory that follow the dictionary source file
format.

	Build your dictionary.

$ grascii dictionary build mysrc/*.txt -o mydict

Note

At this point, your dictionary is usable.

$ grascii search --dictionary ./mydict/ -g AB

If you would like to install the dictionary so you do not have to
keep track of the path, continue with step 4.

	Install the dictionary.

$ grascii dictionary install --name custom ./mydict/

	Verify the installation.

$ grascii dictionary list
Built-in Dictionaries:
preanniversary

Installed Dictionaries:
custom

	Enjoy.

$ grascii search --dictionary :custom -g AB

Uninstalling

Simply run:

$ grascii dictionary uninstall custom

Configuration

Grascii provides a user-level configuration file to set the defaults for several
of its tools.

Getting Started

Create a configuration file with the following command:

$ grascii config --init

Locate the file with:

$ grascii config --where

Editing the Configuration

To change the defaults, open the generated configuration file
and make your desired changes. The available options are described
in the default file.

Similarity Resolution

When running a search, regular expressions are generated with alternatives
based on the given tokens. At a basic level, alternatives include
equivalent forms of the same token. When uncertainty is greater than 0,
similar tokens are also added as alternatives.

The similar tokens are defined by a similarity graph. The set of tokens
returned as being similar are all those within a distance equal to the
uncertainty from the target node when performing a breadth-first-search.

The similarity graph is shown below.

[image: _images/sim_graph.png]

Changelog

Unreleased

Added

	Dictionary build --no-output option

	DictionaryOutputOptions class for DictionaryBuilder.build

	BuildSummary class for results of DictionaryBuilder.build

	Experimental pipelines for dictionary builds

	ignore_case option to GrasciiValidator

Changed

	Searcher.__init__ does not handle DictionaryNotFound exceptions

	grascii search prints an error if a dictionary cannot be found

	Many DictionaryBuilder.__init__ options moved to DictionaryBuilder.build
or were removed

	DictionaryBuilder.build takes infiles and output arguments and returns
a BuildSummary

Removed

	grascii.grammars.get_grammar: Use
Lark.open_from_package("grascii.grammars", grammar_name) instead.

	BuildDirectory configuration file option

	Dictionary build --check-only option: Use --no-output instead

	grascii.dictionary.build.build function: Use DictionaryBuilder.build instead

0.5.0 - 2022-08-12

Added

	SearchResult class to group together relevant data from matches.

	Searcher.sorted_search to obtain a list of sorted SearchResults.

	grascii.dictionary.common module to contain DictionaryExceptions and utility functions.

	Dictionary class to work with grascii dictionaries.

	config.get_default_config to get the text of the default configuration file.

	-V and --version command line options.

	InvalidGrascii exception which is produced by a parser.

	--no-sort option for grascii search.

	grascii.parser.get_grascii_regex_str() to get a string that can be compiled into
a regular expression that recognizes grascii strings.

Changed

	Searcher.search no longer sorts results.

	grascii.dictionary.list: get_installed and get_built_ins return a collection of
installed dictionary names (prefixed with :).

	grascii.dictionary.install.install_dict renamed to install_dictionary and accepts more options.

	grascii.dictionary.uninstall.uninstall_dict renamed to uninstall_dictionary and accepts more options.

	DICTIONARY_PATH renamed to INSTALLATION_DIR.

	Using builtin sorted function speeds up general grascii searches.

	GrasciiParser.interpret returns an iterator instead of a list.

	Updated preanniversary dictionary to 2022.07.26 [https://github.com/grascii/dictionaries/tree/2022.07.26].

Removed

	Dropped Python 3.6 support.

	grascii.dictionary.get_dict_file: Use grascii.dictionary.Dictionary.open instead.

	GrasciiValidator.__init__ use_cache option

Fixed

	Typing issues with searchers and metrics.

	Errors when passing a grascii string with boundaries or disjoiners to the aggressive dephraser.

0.4.1 - 2022-06-29

Added

	Some classes and functions that are considered to be part of the public API are importable from the top-level grascii.

Fixed

	Included TV in grammar.STROKES.

0.4.0 - 2022-06-27

Added

	New parser module abstracts away Grascii parsing details.

	grammar.CONSONANTS and grammar.VOWELS constants.

	Experimental outline module with Outline class to infer directions of shorthand strokes.

	GrasciiValidator class to quickly validate, but not interpret, Grascii strings.

	dictionaries submodule to include dictionary source files.

	Dictionary build --words option to specify words file for spell checking.

	Dictionary build --verbose option to increase build output.

	New docs extra to specify doc building requirements.

Changed

	Switched from lark-parser to new lark package.

	Boundaries can be retained during Grascii Interpretation creation.

	grascii.lark is compatible with LALR.

	An apostrophe is accepted to represent “a” or “an”.

	Multiple semantic grascii.lark grammar changes (see @7ebfd07 [https://github.com/grascii/grascii/commit/7ebfd078dc6414ec1d4856641595c9f5221f25f5]).

	Dictionary build --parse option is now much faster.

	ReverseSearcher provides a more useful sorting of results.

	Updated preanniversary dictionary to r00004 [https://github.com/grascii/dictionaries/tree/r00004].

Removed

	The types module has been removed. Interpretation is now defined in grascii.parser.

	The utils module has been removed.

	Dictionary source files are no longer stored in dsrc.

	The dictionary build --spell option has been removed. (Succeeded by --words)

Fixed

	Removed Y from grammar.HARD_CHARACTERS and grammar.ALPHABET.

	Included DV in grammar.STROKES.

	Grascii contain searches do not match translations.

	Grascii searches match -ing(s) at the end of words.

	Grascii searches match a disjoiner at the end of words.

	Grascii searches do not match double aspirates (except at the end of a word) or double disjoiners.

	Fixed crash on interrupt during interactive interpretation selection.

0.3.0 - 2021-12-14

Added

	New interactive search mode setting to select the dictionaries to search.

Changed

	The search -d/--dictionary option can be specified multiple times to search
more than one dictionary at a time.

	The config file [Search] Dictionary option now accepts a list of
dictionaries.

0.2.2 - 2021-07-08

Added

	Added the -n/--count option to dictionary build to enable the validation
of expected word counts.

Changed

	Word count validation for dictionary builds is no longer performed by
default, but enabled with the --count option–helpful for phrase
dictionaries.

	When the dictionary builder cannot determine an appropriate output file for
an entry, it now prints an error and continues instead of crashing the build
process.

Fixed

	In dictionary builds, the incorrect number of words warning now properly
behaves like a warning. The entry with the warning is now included in the
build instead of being skipped.

0.2.1 - 2021-07-02

Added

	grascii.grammar.ALPHABET: The set of valid characters in the Grascii language.

Changed

	Grascii Search produces a better error message when given an invalid Grascii
string.

	Grascii Dephrase produces a better error message when there are no results.

0.2.0 - 2021-06-25

First Release

Added

	Grascii Search with Grascii, Interactive, Reverse, and Regex modes

	Grascii Dictionary build and installation tools

	Grascii Configuration file and management

	Built-in pre-anniversary dictionary [Status: Review]

	Experimental Grascii Dephrase tool

 Python Module Index

 g

 		 	

 		
 g	

 	[image: -]
 	
 grascii	

 	
 	
 grascii.config	

 	
 	
 grascii.defaults	

 	
 	
 grascii.dephrase	

 	
 	
 grascii.dictionary	

 	
 	
 grascii.dictionary.build	

 	
 	
 grascii.dictionary.common	

 	
 	
 grascii.dictionary.install	

 	
 	
 grascii.dictionary.list	

 	
 	
 grascii.dictionary.pipeline	

 	
 	
 grascii.dictionary.preanniversary	

 	
 	
 grascii.dictionary.uninstall	

 	
 	
 grascii.grammar	

 	
 	
 grascii.grammars	

 	
 	
 grascii.interactive	

 	
 	
 grascii.metrics	

 	
 	
 grascii.outline	

 	
 	
 grascii.parser	

 	
 	
 grascii.regen	

 	
 	
 grascii.search	

 	
 	
 grascii.searchers	

 	
 	
 grascii.similarities	

Index

 Symbols
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

Symbols

 	
 	
 --annotation-mode

 	command line option

 	
 --aspirate-mode

 	command line option

 	
 --check-only

 	command line option

 	
 --clean

 	command line option

 	
 --count

 	command line option

 	
 --dictionary

 	command line option

 	
 --disjoiner-mode

 	command line option

 	
 --fix-first

 	command line option

 	
 --grascii

 	command line option

 	
 --help

 	command line option, [1]

 	
 --interactive

 	command line option

 	
 --interpretation

 	command line option

 	
 --output

 	command line option

 	
 --parse

 	command line option

 	
 --regex

 	command line option

 	
 --reverse

 	command line option

 	
 --search-mode

 	command line option

 	
 --uncertainty

 	command line option

 	
 --verbose

 	command line option

 	
 --words

 	command line option

 	
 -a

 	command line option

 	
 	
 -c

 	command line option

 	
 -d

 	command line option

 	
 -e

 	command line option

 	
 -f

 	command line option

 	
 -g

 	command line option

 	
 -h

 	command line option, [1]

 	
 -i

 	command line option

 	
 -j

 	command line option

 	
 -k

 	command line option

 	
 -n

 	command line option, [1]

 	
 -o

 	command line option

 	
 -p

 	command line option, [1]

 	
 -r

 	command line option

 	
 -s

 	command line option

 	
 -u

 	command line option

 	
 -v

 	command line option

 	
 -w

 	command line option

 	
 1

 	command line option, [1]

 	
 2}

 	command line option, [1]

 	
 <infiles>

 	command line option

A

 	
 	add_annotation() (grascii.outline.Stroke method)

 	
 all}

 	command line option, [1]

 	
 	AnnotatedStroke (class in grascii.metrics)

 	annotations (grascii.metrics.AnnotatedStroke attribute)

B

 	
 	build() (grascii.dictionary.build.DictionaryBuilder method)

 	build_argparser() (in module grascii.config)

 	(in module grascii.dephrase)

 	(in module grascii.dictionary)

 	(in module grascii.dictionary.build)

 	(in module grascii.dictionary.install)

 	(in module grascii.dictionary.list)

 	(in module grascii.dictionary.uninstall)

 	(in module grascii.search)

 	
 	build_regex() (grascii.regen.RegexBuilder method)

 	BuildMessage (class in grascii.dictionary.build)

 	BuildSummary (class in grascii.dictionary.build)

 	BUILTIN (grascii.dictionary.DictionaryType attribute)

C

 	
 	CancelPipeline

 	clean (grascii.dictionary.build.DictionaryOutputOptions attribute)

 	cli_build() (in module grascii.dictionary.build)

 	cli_config() (in module grascii.config)

 	cli_dephrase() (in module grascii.dephrase)

 	cli_install() (in module grascii.dictionary.install)

 	cli_list() (in module grascii.dictionary.list)

 	cli_search() (in module grascii.search)

 	cli_uninstall() (in module grascii.dictionary.uninstall)

 	CLOCKWISE (grascii.outline.Curve attribute)

 	
 command line option

 	--annotation-mode

 	--aspirate-mode

 	--check-only

 	--clean

 	--count

 	--dictionary

 	--disjoiner-mode

 	--fix-first

 	--grascii

 	--help, [1]

 	--interactive

 	--interpretation

 	--output

 	--parse

 	--regex

 	--reverse

 	--search-mode

 	--uncertainty

 	--verbose

 	--words

 	-a

 	-c

 	-d

 	-e

 	-f

 	-g

 	-h, [1]

 	-i

 	-j

 	-k

 	-n, [1]

 	-o

 	-p, [1]

 	-r

 	-s

 	-u

 	-v

 	-w

 	1, [1]

 	2}, [1]

 	<infiles>

 	all}, [1]

 	contain}, [1]

 	retain, [1], [2], [3], [4], [5]

 	start, [1]

 	strict}, [1], [2], [3], [4], [5]

 	
 	config_exists() (in module grascii.config)

 	CONTAIN (grascii.regen.SearchMode attribute)

 	
 contain}

 	command line option, [1]

 	COUNTER_CLOCKWISE (grascii.outline.Curve attribute)

 	create() (grascii.outline.Stroke class method)

 	create_config() (in module grascii.config)

 	create_grascii_check() (in module grascii.dictionary.pipeline)

 	create_spell_check() (in module grascii.dictionary.pipeline)

 	create_token() (grascii.dephrase.PhraseFlattener method)

 	Curve (class in grascii.outline)

 	curve (grascii.outline.StrokeType attribute)

D

 	
 	DEFAULT_PIPELINE (in module grascii.dictionary.build)

 	delete_config() (in module grascii.config)

 	dephrase() (in module grascii.dephrase)

 	determine_shortest_distance() (in module grascii.metrics)

 	Dictionary (class in grascii.dictionary)

 	DictionaryAlreadyExists

 	DictionaryBuilder (class in grascii.dictionary.build)

 	
 	DictionaryEntry (class in grascii.searchers)

 	DictionaryException

 	DictionaryNotFound

 	DictionaryOutputOptions (class in grascii.dictionary.build)

 	DictionaryType (class in grascii.dictionary)

 	Direction (class in grascii.outline)

 	direction (grascii.outline.StrokeType attribute)

E

 	
 	EAST (grascii.outline.Direction attribute)

 	entry_counts (grascii.dictionary.build.BuildSummary attribute)

 	
 	errors (grascii.dictionary.build.BuildSummary attribute)

 	extract_search_args() (grascii.searchers.GrasciiSearcher method)

F

 	
 	file_name (grascii.dictionary.build.BuildMessage attribute)

G

 	
 	generate_patterns_map() (grascii.regen.RegexBuilder method)

 	get_built_ins() (in module grascii.dictionary.list)

 	get_config_file_path() (in module grascii.config)

 	get_default_config() (in module grascii.config)

 	get_dictionary_installed_name() (in module grascii.dictionary.common)

 	get_dictionary_path_name() (in module grascii.dictionary.common)

 	get_grascii_regex_str() (in module grascii.parser)

 	get_installed() (in module grascii.dictionary.list)

 	get_node() (in module grascii.similarities)

 	get_similar() (in module grascii.similarities)

 	get_starting_letters() (grascii.regen.RegexBuilder method)

 	
 grascii

 	module

 	grascii (grascii.searchers.DictionaryEntry attribute)

 	
 grascii.config

 	module

 	
 grascii.defaults

 	module

 	
 grascii.dephrase

 	module

 	
 grascii.dictionary

 	module

 	
 grascii.dictionary.build

 	module

 	
 grascii.dictionary.common

 	module

 	
 grascii.dictionary.install

 	module

 	
 grascii.dictionary.list

 	module

 	
 grascii.dictionary.pipeline

 	module

 	
 	
 grascii.dictionary.preanniversary

 	module

 	
 grascii.dictionary.uninstall

 	module

 	
 grascii.grammar

 	module

 	
 grascii.grammars

 	module

 	
 grascii.interactive

 	module

 	
 grascii.metrics

 	module

 	
 grascii.outline

 	module

 	
 grascii.parser

 	module

 	
 grascii.regen

 	module

 	
 grascii.search

 	module

 	
 grascii.searchers

 	module

 	
 grascii.similarities

 	module

 	grascii_standard() (in module grascii.metrics)

 	GrasciiFlattener (class in grascii.parser)

 	GrasciiParser (class in grascii.parser)

 	GrasciiSearcher (class in grascii.searchers)

 	GrasciiValidator (class in grascii.parser)

 	gsequence_distance() (in module grascii.metrics)

H

 	
 	has_annotation() (grascii.outline.Stroke method)

 	
 	has_direction_annotation() (grascii.outline.Stroke method)

 	HIGH (grascii.regen.Strictness attribute)

I

 	
 	install_dictionary() (in module grascii.dictionary.install)

 	INSTALLED (grascii.dictionary.DictionaryType attribute)

 	InteractiveSearcher (class in grascii.interactive)

 	interpret() (grascii.parser.GrasciiParser method)

 	
 	interpretation_to_gsequence() (in module grascii.metrics)

 	interpretation_to_string() (in module grascii.parser)

 	InvalidGrascii

 	is_dictionary_installed_name() (in module grascii.dictionary.common)

L

 	
 	level (grascii.dictionary.build.BuildMessage attribute)

 	line (grascii.dictionary.build.BuildMessage attribute)

 	LINE (grascii.outline.Curve attribute)

 	
 	line_number (grascii.dictionary.build.BuildMessage attribute)

 	LOCAL (grascii.dictionary.DictionaryType attribute)

 	LOOP (grascii.outline.Curve attribute)

 	LOW (grascii.regen.Strictness attribute)

M

 	
 	main() (in module grascii.config)

 	(in module grascii.dephrase)

 	(in module grascii.dictionary.build)

 	(in module grascii.dictionary.install)

 	(in module grascii.dictionary.list)

 	(in module grascii.dictionary.uninstall)

 	(in module grascii.search)

 	make_annotation_regex() (grascii.regen.RegexBuilder method)

 	make_opt() (grascii.dephrase.PhraseFlattener method)

 	make_uncertainty_regex() (grascii.regen.RegexBuilder method)

 	MATCH (grascii.regen.SearchMode attribute)

 	match_to_gsequence() (in module grascii.metrics)

 	MEDIUM (grascii.regen.Strictness attribute)

 	message (grascii.dictionary.build.BuildMessage attribute)

 	
 module

 	grascii

 	grascii.config

 	grascii.defaults

 	grascii.dephrase

 	grascii.dictionary

 	grascii.dictionary.build

 	grascii.dictionary.common

 	grascii.dictionary.install

 	grascii.dictionary.list

 	grascii.dictionary.pipeline

 	grascii.dictionary.preanniversary

 	grascii.dictionary.uninstall

 	grascii.grammar

 	grascii.grammars

 	grascii.interactive

 	grascii.metrics

 	grascii.outline

 	grascii.parser

 	grascii.regen

 	grascii.search

 	grascii.searchers

 	grascii.similarities

N

 	
 	new() (grascii.dictionary.Dictionary class method)

 	NoMatchingOutputFile

 	NORTH (grascii.outline.Direction attribute)

 	
 	NORTH_EAST (grascii.outline.Direction attribute)

 	NORTH_WEST (grascii.outline.Direction attribute)

 	NoWordFound

O

 	
 	open() (grascii.dictionary.Dictionary method)

 	optionals (grascii.dephrase.PhraseFlattener attribute)

 	
 	Outline (class in grascii.outline)

 	output_dir (grascii.dictionary.build.BuildSummary attribute)

 	(grascii.dictionary.build.DictionaryOutputOptions attribute)

P

 	
 	package (grascii.dictionary.build.DictionaryOutputOptions attribute)

 	parse() (grascii.parser.GrasciiParser method)

 	
 	perform_search() (grascii.searchers.Searcher method)

 	PhraseFlattener (class in grascii.dephrase)

 	PipelineFunc (in module grascii.dictionary.pipeline)

R

 	
 	RegexBuilder (class in grascii.regen)

 	RegexSearcher (class in grascii.searchers)

 	remove_boundaries() (in module grascii.dictionary.pipeline)

 	
 	
 retain

 	command line option, [1], [2], [3], [4], [5]

 	ReverseSearcher (class in grascii.searchers)

S

 	
 	search() (grascii.interactive.InteractiveSearcher method)

 	(grascii.searchers.GrasciiSearcher method)

 	(grascii.searchers.RegexSearcher method)

 	(grascii.searchers.ReverseSearcher method)

 	(grascii.searchers.Searcher method)

 	(in module grascii.search)

 	Searcher (class in grascii.searchers)

 	SearchMode (class in grascii.regen)

 	SearchResult (class in grascii.searchers)

 	short_to() (grascii.dephrase.PhraseFlattener method)

 	sorted_search() (grascii.searchers.GrasciiSearcher method)

 	(grascii.searchers.ReverseSearcher method)

 	(grascii.searchers.Searcher method)

 	SOUTH (grascii.outline.Direction attribute)

 	
 	SOUTH_EAST (grascii.outline.Direction attribute)

 	SOUTH_WEST (grascii.outline.Direction attribute)

 	standardize_case() (in module grascii.dictionary.pipeline)

 	
 start

 	command line option, [1]

 	START (grascii.regen.SearchMode attribute)

 	start() (grascii.dephrase.PhraseFlattener method)

 	Strictness (class in grascii.regen)

 	
 strict}

 	command line option, [1], [2], [3], [4], [5]

 	StripNameSpace (class in grascii.dephrase)

 	Stroke (class in grascii.outline)

 	stroke (grascii.metrics.AnnotatedStroke attribute)

 	StrokeType (class in grascii.outline)

T

 	
 	time (grascii.dictionary.build.BuildSummary attribute)

 	to_interpretation() (grascii.outline.Outline method)

 	
 	translation (grascii.searchers.DictionaryEntry attribute)

 	translation_standard() (in module grascii.metrics)

 	trivial() (in module grascii.metrics)

U

 	
 	uninstall_dictionary() (in module grascii.dictionary.uninstall)

V

 	
 	validate() (grascii.parser.GrasciiValidator method)

W

 	
 	warnings (grascii.dictionary.build.BuildSummary attribute)

 	
 	WEST (grascii.outline.Direction attribute)

 	word() (grascii.dephrase.PhraseFlattener method)

grascii.dictionary.preanniversary package

Module contents

grascii.dictionary package

Subpackages

	grascii.dictionary.preanniversary package
	Module contents

Submodules

grascii.dictionary.build module

Acts as the main entry point for the grascii build command and contains the
dictionary builder implementation.

This can be invoked as a standalone program:
$ python -m grascii.dictionary.build –help

	
class grascii.dictionary.build.BuildMessage(file_name, line, line_number, message, level)

	Bases: NamedTuple

	
file_name: str

	Alias for field number 0

	
level: int

	Alias for field number 4

	
line: str

	Alias for field number 1

	
line_number: int

	Alias for field number 2

	
message: str

	Alias for field number 3

	
class grascii.dictionary.build.BuildSummary(time: float, warnings: List[BuildMessage], errors: List[BuildMessage], output_dir: Optional[PathLike], entry_counts: Optional[Dict[str, int]])

	Bases: object

Results of a dictionary build.

	Parameters

	
	time (float) – The duration of the build in seconds.

	warnings (List[BuildMessage]) – A list of warnings that occurred during the build.

	errors (List[BuildMessage]) – A list of errors that occurred during the build.

	output_dir (Optional[os.PathLike]) – The output directory of the dictionary.

	entry_counts (Optional[Dict[str, int]]) – A dictionary of file names in the output directory to
the number of entries written to that file.

	
entry_counts: Optional[Dict[str, int]]

	

	
errors: List[BuildMessage]

	

	
output_dir: Optional[PathLike]

	

	
time: float

	

	
warnings: List[BuildMessage]

	

	
grascii.dictionary.build.DEFAULT_PIPELINE: List[Callable[[str, str, LoggerAdapter], Tuple[str, str]]] = [<function remove_boundaries>, <function standardize_case>]

	The default pipeline used for dictionary builds.

	
class grascii.dictionary.build.DictionaryBuilder(**kwargs)

	Bases: object

A class that runs the build process for a grascii dictionary.

	Parameters

	
	parse (bool) – Whether to enable parse checking of grascii strings.

	words_file (pathlib.Path) – A Path to a words file for spell checking

	count_words (bool) – Whether to enable word count validation.

	verbosity (int) – Increase the output verbosity

	
build(infiles: Iterable[PathLike], output: Optional[DictionaryOutputOptions]) → BuildSummary

	Run the build based on the build settings given in the constructor.

	Parameters

	
	infiles (Iterable[os.PathLike]) – A collection of file paths to dictionary source files.

	output (Optional[DictionaryOutputOptions]) – Options for dictionary output.

	Returns

	A BuildSummary

	
class grascii.dictionary.build.DictionaryOutputOptions(output_dir: PathLike, clean: bool = False, package: bool = False)

	Bases: object

Options for dictionary build output.

	Parameters

	
	output_dir (os.PathLike) – The directory where to output the dictionary files.

	clean (bool) – Whether to delete all files in the output directory before
building.

	package (bool) – Whether to make the output directory a Python package by
outputing an __init__.py file.

	
clean: bool = False

	

	
output_dir: PathLike

	

	
package: bool = False

	

	
exception grascii.dictionary.build.NoMatchingOutputFile

	Bases: Exception

	
grascii.dictionary.build.build_argparser(argparser: ArgumentParser) → None

	Configure an ArgumentParser parser to parse the build command-line
options.

	Parameters

	argparser – A fresh ArgumentParser to configure.

	
grascii.dictionary.build.cli_build(args: Namespace) → None

	Run a build using arguments parsed from the command line.

	Parameters

	args – A namespace of parsed arguments.

	
grascii.dictionary.build.main() → None

	Run a build using arguments retrieved from sys.argv.

grascii.dictionary.common module

	
exception grascii.dictionary.common.DictionaryAlreadyExists(name: str)

	Bases: DictionaryException

	
exception grascii.dictionary.common.DictionaryException

	Bases: Exception

The base class for all dictionary-related exceptions.

	
exception grascii.dictionary.common.DictionaryNotFound(name: str)

	Bases: DictionaryException

	
grascii.dictionary.common.get_dictionary_installed_name(name: str) → str

	Get the installed name of a dictionary.

i.e. Prefixed with ‘:’

	
grascii.dictionary.common.get_dictionary_path_name(name: str) → str

	Get the path name of a dictionary.

i.e. Not prefixed with ‘:’

	
grascii.dictionary.common.is_dictionary_installed_name(name: str) → bool

	Check whether the given name represents an installed dictionary.

grascii.dictionary.install module

	
grascii.dictionary.install.build_argparser(argparser: ArgumentParser) → None

	

	
grascii.dictionary.install.cli_install(args: Namespace) → None

	

	
grascii.dictionary.install.install_dictionary(dictionary: Path, install_dir: Path, name: Optional[str] = None, force: bool = False) → str

	Install a dictionary to an installation directory.

	Parameters

	
	dictionary (Path) – A path to the output directory of a dictionary build.

	install_dir (Path) – A path to install the dictionary to.

	name (str) – An optional name to give the installed dictionary.

	force (bool) – If True, an existing dictionary can be overwritten.

	Returns

	The installed name of the dictionary.

	
grascii.dictionary.install.main() → None

	Run the install command using arguments from sys.argv.

grascii.dictionary.list module

	
grascii.dictionary.list.build_argparser(argparser: ArgumentParser) → None

	

	
grascii.dictionary.list.cli_list(args: Namespace) → None

	

	
grascii.dictionary.list.get_built_ins() → Collection[str]

	Get a collection of the installed names of all built-in dictionaries.

	Returns

	A collection of built-in dictionary names.

	
grascii.dictionary.list.get_installed() → Collection[str]

	Get a collection of the installed names of all user-installed dictionaries.

	Returns

	A collection of installed dictionary names.

	
grascii.dictionary.list.main() → None

	Run the list command using arguments from sys.argv.

grascii.dictionary.pipeline module

	
exception grascii.dictionary.pipeline.CancelPipeline

	Bases: Exception

An Exception that can be thrown from a pipeline function to cancel the
entire pipeline for a given entry.

	
grascii.dictionary.pipeline.PipelineFunc

	A function for dictionary builds that checks and/or
transforms a Grascii string and its translation in a dictionary entry.

The first parameter is a Grascii string, the second parameter is its translation,
and the third parameter is a logger. The function must return a Grascii string
and a translation or raise a CancelPipeline exception.

alias of Callable[[str, str, LoggerAdapter], Tuple[str, str]]

	
grascii.dictionary.pipeline.create_grascii_check(ignore_case: bool = True) → Callable[[str, str, LoggerAdapter], Tuple[str, str]]

	Create a pipeline function that validates the Grascii string.

	Parameters

	ignore_case (bool) – Whether to ignore the case of the Grascii string. If
False, the Grascii string must be uppercase.

	
grascii.dictionary.pipeline.create_spell_check(words_file: PathLike) → Callable[[str, str, LoggerAdapter], Tuple[str, str]]

	Create a pipeline function that checks the words in a translation using
the words from a file.

	Parameters

	words_file (os.PathLike) – A path to a line-delimited words file.

	
grascii.dictionary.pipeline.remove_boundaries(grascii: str, translation: str, logger: LoggerAdapter)

	A pipeline function that removes boundary characters from the Grascii string.

	
grascii.dictionary.pipeline.standardize_case(grascii: str, translation: str, logger: LoggerAdapter)

	A pipeline function that uppercases the Grascii string and capitalizes
each word in the translation.

grascii.dictionary.uninstall module

	
grascii.dictionary.uninstall.build_argparser(argparser: ArgumentParser) → None

	

	
grascii.dictionary.uninstall.cli_uninstall(args: Namespace) → None

	

	
grascii.dictionary.uninstall.main() → None

	Run the uninstall command using arguments from sys.argv.

	
grascii.dictionary.uninstall.uninstall_dictionary(name: str, install_dir: Path, force: bool = False) → None

	Uninstall a dictionary from an installation directory.

	Parameters

	
	name (Path) – The name of the dictionary to uninstall.

	install_dir (Path) – A path to uninstall the dictionary from.

	force (bool) – If True, forces the uninstallation of a dictionary even in the case of corruption.

Module contents

	
class grascii.dictionary.Dictionary(path: PathLike, dtype: DictionaryType, name: Optional[str] = None)

	Bases: object

A class that represents a grascii dictionary and provides methods for reading
entries from the dictionary.

	
classmethod new(name: Union[str, PathLike]) → Dictionary

	Create a new dictionary from its installed name or a file path.

	Parameters

	name (Union[str, os.PathLike]) – The name of an installed dictionary (starting with ‘:’) or a path to a dictionary.

	Returns

	A new Dictionary for the given name.

	
open(name: str) → TextIO

	Open a file from the dictionary with the given name for reading.
The caller is responsible for closing the file.

	Parameters

	name (str) – The name of the file to open.

	Returns

	A text stream.

	
class grascii.dictionary.DictionaryType(value)

	Bases: Enum

An enumeration.

	
BUILTIN = 0

	

	
INSTALLED = 1

	

	
LOCAL = 2

	

	
grascii.dictionary.build_argparser(argparser: ArgumentParser) → None

	

grascii.grammars package

Module contents

Contains grammars used by grascii.

grascii package

Subpackages

	grascii.dictionary package
	Subpackages
	grascii.dictionary.preanniversary package
	Module contents

	Submodules

	grascii.dictionary.build module

	grascii.dictionary.common module

	grascii.dictionary.install module

	grascii.dictionary.list module

	grascii.dictionary.pipeline module

	grascii.dictionary.uninstall module

	Module contents

	grascii.grammars package
	Module contents

Submodules

grascii.config module

Contains functions for working with a grascii configuration file.
Acts as the entry point for the grascii config command.

This can be invoked as a standalone program:
$ python -m grascii.config –help

	
grascii.config.build_argparser(argparser: ArgumentParser) → None

	Configure an ArgumentParser parser to parse the config command-line
options

	Parse argparser

	A fresh ArgumentParser to configure.

	
grascii.config.cli_config(args: Namespace) → None

	Run a search using arguments parsed from the command line.

	Parameters

	args – A namespace of parsed arguments.

	
grascii.config.config_exists() → bool

	Check whether the user configuration file exists.

	Returns

	True if the configuration file exists.

	
grascii.config.create_config() → None

	Create a configuration file with the default settings.

	
grascii.config.delete_config() → None

	Delete a configuration file.

	
grascii.config.get_config_file_path() → PurePath

	Get a path object representating the location of the configuration
file.

	Returns

	A path object.

	
grascii.config.get_default_config() → str

	Get the text of the default configuration file.

	Returns

	A string containing the default configuration.

	
grascii.config.main() → None

	Run the config command using arguments from sys.argv.

grascii.defaults module

grascii.dephrase module

	
exception grascii.dephrase.NoWordFound

	Bases: Exception

	
class grascii.dephrase.PhraseFlattener

	Bases: Transformer

	
create_token(name: str, value: str = '')

	

	
make_opt(name)

	

	
optionals = {'opt_in': 'IN', 'opt_of': 'OF', 'opt_to': 'TO', 'opt_your': 'YOUR'}

	

	
short_to(children)

	

	
start(children)

	

	
word(tree)

	

	
class grascii.dephrase.StripNameSpace(namespace)

	Bases: Transformer

	
grascii.dephrase.build_argparser(argparser: ArgumentParser) → None

	

	
grascii.dephrase.cli_dephrase(args: Namespace) → None

	

	
grascii.dephrase.dephrase(**kwargs) → Set[str]

	

	
grascii.dephrase.main() → None

	

grascii.grammar module

A collection of useful information about the grascii grammar.

	var STROKES

	A set of all valid strokes.

	var HARD_CHARACTERS

	A set of all alphabetic characters that can appear as
the first character in a stroke.

	var ANNOTATION_CHARACTERS

	The set of all characters that are annotations.

	var ASPIRATE

	The character corresponding to the aspirate.

	var MEDIUM_SOUND

	The character corresponding to the medium sound of a standard
vowel.

	var LONG_SOUND

	The character corresponding to the long sound of a standard
vowel.

	var LOOP

	The character corresponding to the loop annotation.

	var REVERSE

	The character corresponding to the reversing annotation.

	var WUNDERBAR

	The character corresponding to the underbar (W) annotation.

	var ING

	The character corresponding to the -ing ending.

	var LEFT

	A character corresponding to a direction annotation.

	var RIGHT

	A character corresponding to a direction annotation.

	var OBLIQUE

	The character corresponding to the oblique annotation.

	var DISJOINER

	The character corresponding to a disjoiner.

	var BOUNDARY

	The character corresponding to a boundary.

	var INTERSECTION

	The character corresponding to an intersection.

	var ALPHABET

	The set of valid characters in the grascii language.

	var ANNOTATIONS

	A dictionary of annotatable strokes to a sequence of
acceptable annotations on the corresponding stroke. The sequece contains
tuples of annotations. The tuples are ordered in the same order they
must appear in a strict grascii string. The tuples contain mutually
exclusive annotations. Ex: MEDIUM_SOUND and LONG_SOUND

grascii.interactive module

Contains an implementation of an Interactive Searcher for an
interactive cli experience.

	
class grascii.interactive.InteractiveSearcher(**kwargs)

	Bases: GrasciiSearcher

This subclass of GrasciiSearcher runs an interactive search
experience for performing grascii searches with support for changing
search parameters.

	
search(**kwargs)

	
	Parameters

	
	grascii (str) – [Required] The grascii string to use in the search.

	uncertainty (int: 0, 1, or 2) – The uncertainty of the grascii string.

	search_mode (str: one of regen.SearchMode values) – The search mode to use.

	annotation_mode (one of regen.Strictness values) – How to handle annotations in the search.

	aspirate_mode (one of regen.Strictness values) – How to handle annotations in the search.

	disjoiner_mode (one of regen.Strictness values) – How to handle annotations in the search.

	fix_first (bool) – Apply an uncertainty of 0 to the first token.

	Returns

	None

	Return type

	None

grascii.metrics module

Contains metrics for comparing search queries to regular expression matches.

	
class grascii.metrics.AnnotatedStroke(stroke, annotations)

	Bases: NamedTuple

	
annotations: Set[str]

	Alias for field number 1

	
stroke: str

	Alias for field number 0

	
grascii.metrics.determine_shortest_distance(matches: List[Tuple[IT, Match[str]]], func: Callable[[IT, Match[str]], CT]) → CT

	Determine the minimum value produced by a function on pairs of interpretations
and matches. Utility for building metrics.

	
grascii.metrics.grascii_standard(result: SearchResult[Interpretation]) → int

	Compute the standard metric for a grascii search.

	Parameters

	result – A SearchResult

	Returns

	A distance between an Interpretation and a Match

	
grascii.metrics.gsequence_distance(seq1: List[AnnotatedStroke], seq2: List[AnnotatedStroke]) → int

	Compute a weighed Levenshtein distance between two sequences of annotated
strokes.

	Parameters

	
	seq1 – A GrasciiSequence

	seq2 – A second GrasciiSequence

	Returns

	A distance between seq1 and seq2.

	
grascii.metrics.interpretation_to_gsequence(interp: List[Union[str, List[str]]]) → List[AnnotatedStroke]

	Convert an interpretation into a GrasciiSequence

	Parameters

	interp – The interpretation to convert.

	Returns

	A GrasciiSequence.

	
grascii.metrics.match_to_gsequence(match: Match[str]) → List[AnnotatedStroke]

	Convert a match into a GrasciiSequence

	Parameters

	match – The match to convert.

	Returns

	A GrasciiSequence.

	
grascii.metrics.translation_standard(result: SearchResult[str]) → Tuple[int, int]

	Compute the standard metric for a reverse search.

	Parameters

	result – A SearchResult

	Returns

	A comparable key representing the distance between a translation
and a Match

	
grascii.metrics.trivial(result: SearchResult[IT]) → int

	The trivial metric.

	Parameters

	result – A SearchResult

	Returns

	0

grascii.outline module

	
class grascii.outline.Curve(value)

	Bases: Enum

An enumeration.

	
CLOCKWISE = 2

	

	
COUNTER_CLOCKWISE = 3

	

	
LINE = 1

	

	
LOOP = 4

	

	
class grascii.outline.Direction(value)

	Bases: Enum

An enumeration.

	
EAST = 'E'

	

	
NORTH = 'N'

	

	
NORTH_EAST = 'NE'

	

	
NORTH_WEST = 'NW'

	

	
SOUTH = 'S'

	

	
SOUTH_EAST = 'SE'

	

	
SOUTH_WEST = 'SW'

	

	
WEST = 'W'

	

	
class grascii.outline.Outline(interpretation: List[Union[str, List[str]]])

	Bases: object

An alternative to Interpretation as a representation of a
Grascii string. It is structured as a linked list and is better for
contextual processing of strokes. Outlines infer the directions of
directional characters and explicitly add direction annotations.

	
to_interpretation() → List[Union[str, List[str]]]

	Convert this Outline to an Interpretation

	
class grascii.outline.Stroke(stroke: str, head_direction: Optional[Direction] = None, head_curve: Optional[Curve] = None, tail_direction: Optional[Direction] = None, tail_curve: Optional[Curve] = None)

	Bases: object

The building block of an Outline

	
add_annotation(annotation: str)

	

	
classmethod create(stroke: str) → Stroke

	

	
has_annotation(annotation: str) → bool

	

	
has_direction_annotation() → bool

	

	
class grascii.outline.StrokeType(direction, curve)

	Bases: NamedTuple

	
curve: Optional[Curve]

	Alias for field number 1

	
direction: Optional[Direction]

	Alias for field number 0

grascii.parser module

	
class grascii.parser.GrasciiFlattener(preserve_boundaries: bool = False, start_rule: str = 'start')

	Bases: Transformer

This is a Lark Transformer that converts a parsed Grascii string
into an Interpretation. An Interpretation is a list of terminals and
annotation lists. Each terminal is its own element in the interpretation,
but sequences of annotation terminals are grouped into their own sublist.

	
class grascii.parser.GrasciiParser

	Bases: object

Parses and interprets Grascii strings.

	
interpret(grascii: str, preserve_boundaries: bool = False) → Iterator[List[Union[str, List[str]]]]

	Interpret a Grascii string.

	Parameters

	
	grascii – A Grascii string to interpret

	preserve_boundaries – When False, boundaries in the string (‘-‘)
are not included in the resulting interpretations.

	Returns

	An iterator over interpretations.

	
parse(grascii: str) → Tree

	Parse the given string into a Tree.

	Parameters

	grascii – A Grascii string to parse.

	Returns

	An ambiguous parse tree of the Grascii string.

	
class grascii.parser.GrasciiValidator(ignore_case: bool = False)

	Bases: object

Validates Grascii strings.

	Parameters

	ignore_case (bool) – Whether to ignore the case of the Grascii string. If
False, the Grascii string must be uppercase.

	
validate(grascii: str) → bool

	Check whether the given string is valid Grascii.

	Parameters

	grascii – A string to check

	Returns

	bool

	
exception grascii.parser.InvalidGrascii(grascii: str, unexpected_input: UnexpectedInput)

	Bases: Exception

Exception thrown by the GrasciiParser when provided an invalid string.

	
grascii.parser.get_grascii_regex_str() → str

	Get a string that can be compiled into a regular expression that matches
Grascii strings.

	
grascii.parser.interpretation_to_string(interpretation: List[Union[str, List[str]]]) → str

	Generate a string representation of an Interpretation.

	Parameters

	interpretation – An Interpretation to generate a string for.

	Returns

	A string representation of an Interpretation

grascii.regen module

Contains RegexBuilder for generating regular expression to use in grascii
searches.

	
class grascii.regen.RegexBuilder(**kwargs)

	Bases: object

A class used for generating regular expressions used to search from
a grascii string based on grascii search options.

	Parameters

	
	uncertainty (int: 0, 1, or 2) – The uncertainty of the grascii string.

	search_mode (str: one of regen.SearchMode values) – The search mode to use.

	annotation_mode (one of regen.Strictness values) – How to handle annotations in the search.

	aspirate_mode (one of regen.Strictness values) – How to handle annotations in the search.

	disjoiner_mode (one of regen.Strictness values) – How to handle annotations in the search.

	fix_first (bool) – Apply an uncertainty of 0 to the first token.

	
build_regex(interpretation: List[Union[str, List[str]]]) → str

	Create a regular expression from a grascii interpretation based
on the constructor search parameters.

	Parameters

	interpretation – The interpretation for which to generate a
regular expression.

	Returns

	A regular expression.

	
generate_patterns_map(interpretations: List[List[Union[str, List[str]]]]) → List[Tuple[List[Union[str, List[str]]], Pattern]]

	Generates a set of compiled regular expressions from a list
of interpretations.

	Parameters

	interpretations – A list of interpretations to generate
patterns for.

	Returns

	A list of Interpretations with their corresponding
Patterns.

	
get_starting_letters(interpretations: List[List[Union[str, List[str]]]]) → Set[str]

	Get a set of starting letters based on the given interpretations
factoring in uncertainty.

	Parameters

	interpretations – A list of interpretations to generate
starting letters for.

	Returns

	A set of characters.

	
make_annotation_regex(stroke: str, annotations: Iterable[str]) → str

	Create a regular expression that matches the stroke with
the acceptable annotations and given annotations according to
the search options.

	Parameters

	
	stroke – The stroke for which to generate annotations.

	annotations – A collection of annotations used in generating
the regular expression.

	Returns

	A regular expression.

	
make_uncertainty_regex(stroke: str, uncertainty: int, annotations: list = []) → str

	Create a regular expression that matches a stroke within a given
uncertainty while applying provided annotations.

	Parameters

	
	stroke – The stroke for which to generate alternatives.

	uncertainty – The uncertainty to apply to the stroke.

	annotations – A list of annotations to use in the generation.

	Returns

	A regular expression.

	
class grascii.regen.SearchMode(value)

	Bases: Enum

An enum representing different search modes.

	
CONTAIN = 'contain'

	

	
MATCH = 'match'

	

	
START = 'start'

	

	
class grascii.regen.Strictness(value)

	Bases: Enum

An enum representing different levels of strictness for handling
annotations, aspirates, and disjoiners in grascii strings.

	
HIGH = 'strict'

	

	
LOW = 'discard'

	

	
MEDIUM = 'retain'

	

grascii.search module

Acts as the main entry point for the grascii search command.

This can be invoked as a standalone program:
$ python -m grascii.search –help

	
grascii.search.build_argparser(argparser: ArgumentParser) → None

	Configure an ArgumentParser parser to parse the search command-line
options.

	Parameters

	argparser – A fresh ArgumentParser to configure.

	
grascii.search.cli_search(args: Namespace) → None

	Run a search using arguments parsed from the command line.

	Parameters

	args – A namespace of parsed arguments.

	
grascii.search.main() → None

	Run a search using arguments retrieved from sys.argv.

	
grascii.search.search(**kwargs) → Optional[Iterable[SearchResult]]

	Run a grascii dictionary search. Parameters can consist of
any parameters used by the search method of any subclass of
Searcher. One, and only one, of the parameters list below
is required.

	Parameters

	
	grascii (str) – A grascii string to use in a search.

	interactive (bool) – A flag enabling an interactive search.

	reverse (str) – A word to search for in the dictionary.

	regexp (str) – A regular expression to use in a search.

	Returns

	A list of search results, or None if run in interactive mode

grascii.searchers module

Contains the base class for Searchers as well as multiple concrete
implementations of it.

	
class grascii.searchers.DictionaryEntry(grascii, translation)

	Bases: NamedTuple

	
grascii: str

	Alias for field number 0

	
translation: str

	Alias for field number 1

	
class grascii.searchers.GrasciiSearcher(**kwargs: Any)

	Bases: Searcher[List[Union[str, List[str]]]]

A subclass of Searcher that performs a search given a Grascii string.

	Parameters

	dictionaries (List[str]) – The dictionaries to search.

	
extract_search_args(**kwargs: Any) → None

	Get the relevant arguments for search.

	
search(**kwargs: Any) → Optional[Iterable[SearchResult[List[Union[str, List[str]]]]]]

	
	Parameters

	
	grascii (str) – [Required] The grascii string to use in the search.

	uncertainty (int: 0, 1, or 2) – The uncertainty of the grascii string.

	search_mode (str: one of regen.SearchMode values) – The search mode to use.

	annotation_mode (str: one of regen.Strictness values) – How to handle annotations in the search.

	aspirate_mode (str: one of regen.Strictness values) – How to handle annotations in the search.

	disjoiner_mode (str: one of regen.Strictness values) – How to handle annotations in the search.

	fix_first (bool) – Apply an uncertainty of 0 to the first token.

	interpretation ("best" or "all") – How to handle ambiguous grascii strings.

	Returns

	A list of search results.

	Return type

	List[str]

	
sorted_search(metric: Callable[[SearchResult[Interpretation]], Comparable] = <function grascii_standard>, **kwargs: Any) → Sequence[SearchResult[Interpretation]]

	Run a search with the given args and sort the search results by the
given metric.

	
class grascii.searchers.RegexSearcher(**kwargs: Any)

	Bases: Searcher[str]

A subclass of Searcher that searches a grascii dictionary given
a raw regular expression.

	Parameters

	dictionaries (List[str]) – The dictionaries to search.

	
search(**kwargs: Any) → Iterable[SearchResult[str]]

	
	Parameters

	regexp – [Required] A regular expression to use in a search.

	Returns

	A list of search results.

	Return type

	List[str]

	
class grascii.searchers.ReverseSearcher(**kwargs: Any)

	Bases: RegexSearcher

A subclass of RegexSearcher that searches a grascii dictionary
given a word.

	Parameters

	dictionaries (List[str]) – The dictionaries to search.

	
search(**kwargs: Any) → Iterable[SearchResult[str]]

	
	Parameters

	reverse – [Required] A word to search for.

	Returns

	A list of search results.

	Return type

	List[str]

	
sorted_search(metric: Callable[[SearchResult[str]], Comparable] = <function translation_standard>, **kwargs: Any) → Sequence[SearchResult[str]]

	Run a search with the given args and sort the search results by the
given metric.

	
class grascii.searchers.SearchResult(matches: List[Tuple[IT, Match[str]]], entry: DictionaryEntry, dictionary: Dictionary)

	Bases: Generic[IT]

	
class grascii.searchers.Searcher(**kwargs: Any)

	Bases: ABC, Generic[IT]

An abstract base class for objects that search Grascii dictionaries.

	Parameters

	dictionaries (List[str]) – The dictionaries to search.

	
perform_search(patterns: Iterable[Tuple[IT, Pattern[str]]], starting_letters: Set[str]) → Iterable[SearchResult[IT]]

	Perform a search of a Grascii Dictionary.

	Parameters

	
	patterns – An iterable of interpretations and corresponding compiled
regular expression patterns.

	starting_letters – A set of letters used to index the search in
a Grascii Dictionary.

	Returns

	An iterable of search results

	
abstract search(**kwargs: Any) → Optional[Iterable[SearchResult[IT]]]

	An abstract method that runs a search with the given search
options and returns the results.

	
sorted_search(metric: Callable[[SearchResult[IT]], Comparable] = <function trivial>, **kwargs: Any) → Sequence[SearchResult[IT]]

	Run a search with the given args and sort the search results by the
given metric.

grascii.similarities module

Contains methods for detemining the similarity of grascii strokes.

	
grascii.similarities.get_node(stroke: str) → Tuple[str, ...]

	Get a tuple of all strokes equivalent to the given stroke.

	
grascii.similarities.get_similar(stroke: str, distance: int) → Set[Tuple]

	Get a set of all strokes within a distance to the
given node.

	Parameters

	
	stroke – The stroke to get similars for.

	distance – The maximum distance of similar strokes.

	Returns

	A set of strokes grouped by equivalency.

Module contents

grascii

	grascii package
	Subpackages
	grascii.dictionary package
	Subpackages

	Submodules

	grascii.dictionary.build module

	grascii.dictionary.common module

	grascii.dictionary.install module

	grascii.dictionary.list module

	grascii.dictionary.pipeline module

	grascii.dictionary.uninstall module

	Module contents

	grascii.grammars package
	Module contents

	Submodules

	grascii.config module

	grascii.defaults module

	grascii.dephrase module

	grascii.grammar module

	grascii.interactive module

	grascii.metrics module

	grascii.outline module

	grascii.parser module

	grascii.regen module

	grascii.search module

	grascii.searchers module

	grascii.similarities module

	Module contents

 nav.xhtml

 Table of Contents

 		
 Welcome to Grascii’s documentation!

 		
 Grascii

 		
 About the Project

 		
 Useful Links

 		
 Made With

 		
 Getting Started

 		
 Prerequisites

 		
 Installation

 		
 Grascii Language

 		
 Grascii Search

 		
 Motivation

 		
 Basic Usage

 		
 Uncertainty

 		
 Interactive Mode

 		
 More Options

 		
 Grascii Dictionary

 		
 Grascii Dephrase (Experimental)

 		
 Documentation

 		
 Contributing

 		
 Dictionary

 		
 License

 		
 Acknowledgements

 		
 Maintainer’s Note

 		
 Language

 		
 What is Grascii?

 		
 Annotations

 		
 Other Symbols

 		
 Examples

 		
 Unsupported Language Features

 		
 Search

 		
 Usage

 		
 Suggestions

 		
 Implementation

 		
 Dictionary

 		
 Dictionary Source File Layout

 		
 Basic Entry

 		
 Blank Lines

 		
 Comments

 		
 Uncertainties

 		
 Source File Conventions

 		
 The Build Process

 		
 Input and Output

 		
 Output File Format

 		
 Building

 		
 Usage

 		
 Warnings and Errors

 		
 Working with Custom Dictionaries

 		
 Uninstalling

 		
 Configuration

 		
 Getting Started

 		
 Editing the Configuration

 		
 Similarity Resolution

 		
 Changelog

 		
 Unreleased

 		
 Added

 		
 Changed

 		
 Removed

 		
 0.5.0 - 2022-08-12

 		
 Added

 		
 Changed

 		
 Removed

 		
 Fixed

 		
 0.4.1 - 2022-06-29

 		
 Added

 		
 Fixed

 		
 0.4.0 - 2022-06-27

 		
 Added

 		
 Changed

 		
 Removed

 		
 Fixed

 		
 0.3.0 - 2021-12-14

 		
 Added

 		
 Changed

 		
 0.2.2 - 2021-07-08

 		
 Added

 		
 Changed

 		
 Fixed

 		
 0.2.1 - 2021-07-02

 		
 Added

 		
 Changed

 		
 0.2.0 - 2021-06-25

 		
 Added

_static/file.png

_images/sim_graph.png

_static/minus.png

_static/plus.png

